#### **Gamma Irradiation and Heat Inactivation Comparison**

#### Rosie Versteegen Nicole Green

NOTHING WORKS LIKE SERUM

INDUSTRY ASSOCIATION

©2023 ISIA Confidential & Proprietary

### Serum Risk and Risk Management

- One of the most common routes for introducing adventitious agents into cell cultures is through animal-derived medium supplements and reagents.
- This possible introduction and replication of adventitious agents during cell culture has long been recognized as a potential risk that must be managed accordingly.
- As a result, most regulatory bodies allow the use of animal serum and other animal derived materials only when their use can be justified because there is no viable alternative
- In recent years, advances in testing and filtration technology have helped in the management and mitigation of such risks.

## Post-Manufacturing Treatments

- Filtration using 0.2  $\mu$ m (and smaller) pore size filters
  - Not effective for viruses
- Ultraviolet (UV) irradiation
  - Not currently commercially available
- Heat inactivation/treatment
  - More later
- Chemical treatment
  - Not currently commercially available
- Ionizing radiation
  - Electron beam
    - Not enough penetrating capability for bottles
- X-irradiation
  - Not commercially available
- Gamma Irradiation
  - Has the penetrating power and ease of handling for routine use in viral load reduction for finished serum

## Serum Testing for Adventitious Agents

- Each serum lot must be tested for all types of adventitious agents
  - Bacteria
  - Mycoplasma
  - Adventitious viruses.
- Bacteria are removed by filtration
- Most mycoplasma are also removed by filtration.
  - Gamma irradiation is highly effective
- Virus testing is typically performed in accordance with USDA 9 CFR, USP, EMAA Agency, EP or WHO requirements, and serum should be free of detectable agents.
- If serum is positive for an adventitious agent, then gamma irradiation is the method of choice for viral load reduction

#### **Risk Management for Animal Serum**

- If serum is positive for an adventitious agent, then gamma irradiation has been the method of choice for viral load reduction
- But what about heat inactivation?

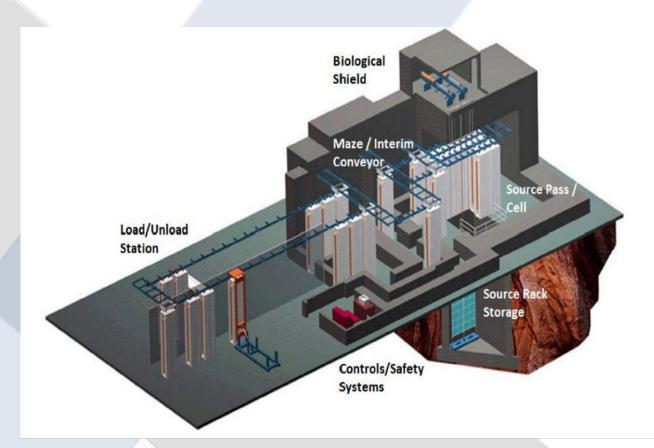
#### Heat Inactivation

- Heat treatment of animal serum is a longstanding and normal procedure in many cell culture labs and is included in many biomanufacturing protocols.
- The most common methodology requires the heating of serum at 56°C for 30 minutes
  - Serum must be thawed in the refrigerator or on the bench and mixed well, as it stratifies on freezing
  - Capped and sealed bottles must be placed in a water bath deep enough to submerge all the serum.
  - Once the temperature of the bottles has reached 56 °C, they must be left in the water bath for 30 minutes and gently agitated periodically
- Heat inactivation can be performed in bulk as a custom order from some suppliers

#### Heat Inactivation Concerns

- Well-designed and controlled studies on heat inactivation have shown that growth characteristics for greater than 50% of cell lines tested are negatively impacted by serum heat inactivation.
  - The variability inherent in the process includes:
    - Exact temperatures and exposure times used
    - Mixing of the serum in the bottles
    - Depth of water in the water bath relative to the height of the serum bottles
- This variability is compounded by the fact that temperatures ranging from 45–62°C, and times from 15–60 minutes may be required.

#### So what about Gamma Irradiation?


A more complex but better controlled methodology

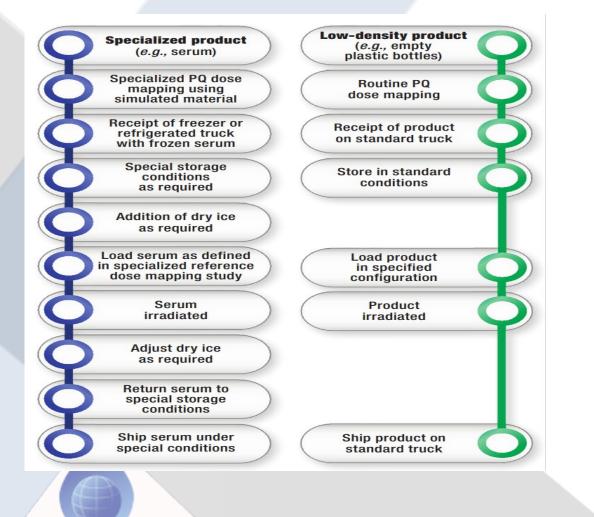
### Method of Action of Gamma Irradiation



- The direct mechanism minimizes unintended damage to critical animal serum components
- Irradiation in sealed product containers at low temperature (typically – 60 °C or lower) results in inactivation of microorganisms in a manner that is first-order with respect to radiation dose.
- Gamma irradiation is effective on all but very small nonenveloped viruses

#### **Irradiation Process**





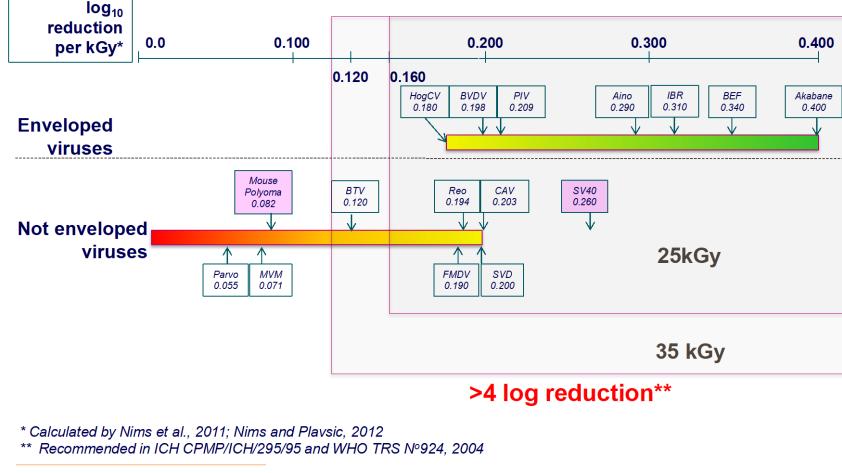

- Dry ice is added to reach very cold temperatures
- Containers enter the shield through a mazelike section
- Move into the inner chamber
- Index around the source, stopping at defined locations on both sides of the source
- Move back outside of the shield and offloaded
- Certificate of Irradiation generated

#### The radiation dose received is a function of

- the design of the irradiator
- the activity (intensity) of the radiation source,
- the density of the product (as loaded in its container)
- the time spent in each position around the source

### Irradiation of Specialty Products




- Significantly more complicated
- Dry ice needs to be reloaded
- Cannot be run unattended
- Leads to difficulty in scheduling

#### **Irradiation Facts**

- A reduction of 4 logs is considered effective based on the viral load generally found in serum
- Small unenveloped viruses are the least sensitive to gamma irradiation
  - Higher doses will destroy the biological activity of the serum
  - Alternative risk mitigation strategies are required
- Each configuration must be dose mapped
  - Someone else's protocol will not work!
- Radiation dose is always a range
  - The tighter the requirement, the harder it is to hit
  - Most regulations require 25 30KgY

#### **Susceptibility of different model viruses to** γ**-irradiation** Inactivation data in serum





**ISIA Barcelona** 

18 May 2016

9

#### Effectiveness on Specific Viruses

- Examples are viruses of concern from the USDA Risk Assessment
- Blue tongue (BTV)
- Cache Valley (CVV)\*
- Foot and Mouth (FMDV)
- Bovine Viral Diarrhea Virus (BVDV)

\* While CVV is not on the USDA list it is a relatively new virus of concern

### Relative Sensitivity to Irradiation

| Virus | Family         | Genome               | Envelope | Particle<br>Size (nm) | Irradiation<br>Dose Used<br>(kGy) | Log10<br>Reduction in<br>Titer | Log10<br>Reduction<br>with Heat |
|-------|----------------|----------------------|----------|-----------------------|-----------------------------------|--------------------------------|---------------------------------|
| CVV   | Bunyaviridae   | ss-RNA, segmented    | Yes      | 90–120                | 26–34                             | ≥ 5.4                          | 2.6                             |
| BVDV  | Flaviviridae   | ss-RNA               | Yes      | 40–60                 | 25-35                             | ≥4.3                           | 6.0                             |
| BTV   | Reoviridae     | ds-RNA,<br>segmented | No       | 60-80                 | 25–35                             | 3.3                            | <1.0                            |
| FMDV* | Picornaviridae | ss-RNA               | No       | 25 - 37               | 25 - 35                           | 5.7                            | 3.0                             |

• SVDV a family member of FMDV has a log 10 reduction of 6

#### Summary

- Generally speaking, for three out of the four viruses it appears that Gamma provides around twice as much viral load reduction
- The outlier is BVDV where heat may be slightly more effective
- Given the variability of heat inactivation and its lower effectivity in viral reduction, heat inactivation of FBS is not an ISIA-recommended practice, unless it has been shown to be necessary for a specific cell culture application.
  - Heat inactivation may be required to inactivate complement in calf and adult bovine serum for use in some applications.

# References available at https://www.serumindustry.org/gamma-irradiation

# This has been a high level look at these two post manufacturing treatment methods

# Would you be interested in a more in depth review of gamma irradiation?

#### Thank You!